Introduction to
High-Level Synthesis

Topbar’s VLSI TECHNOLOGY
allows companies to build large,
complex systems containing mil-
lions of transistors on a single chip.
To exploit this technology, de-
signers need sophisticated CAD
tools that enable them to manage
millions of transistors efficiently.

Until recently, most ASIC (appli-
cation-specific 1C) and system
houses used a capture-and-simu-
late design methodology. Follow-
ing this methodology, the design
department starts with a specific set
of product requirements, usually
supplied by the marketing depart-
ment. Since these requirements
contain no information about im-
plementation of the product, a
team of chief architects produces
a rough block diagram of the chip
architecture, which serves as a pre-
liminary, incomplete specification.
In some cases, the architects fur-
ther refine this initial block dia-
gram before giving it to a team of
logic and layout designers.

The logic and layout designers
convert each functional block into
alogic or circuit schematic, which
is captured by schematic-capture
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The basic problem of high-level
synthesis is the mapping of a
behavioral description of a digital
system info an RTL design
consisting of a data path and a
control unit. The authors introduce
the FSMD model, which forms the
basis for synthesis. They discuss the
main considerations in a high-level
synthesis environment: the input
description language, the internal
representation, and the main
synthesis tasks—allocation,
scheduling, and binding. They
conclude with some problems that
must be solved to make high-level
synthesis a widely accepted
methodology.

for placement and routing of gates
in gate-array technologies, or to
map gates into standard or custom
cells before placement and routing
in custom technologies.

Only in the last few years has log-
ic synthesis become recognized as
an integral part of the design
process, leading to an evolution in
methodology from capture-and-sim-
ulate to describe-and-synthesize.
The new methodology’s advantage
is that it allows us to describe a de-
sign in a purely behavioral form, de-
void of implementation details, and
then to synthesize the design struc-
ture with CAD tools.

Designers can apply the de-
scribe-and-synthesize methodolo-
gy on several levels of abstraction.
On the gate level, they can synthe-
size functional and control unit log-
ic by means of combinational logic
synthesis. They also can synthesize
controllers from finite-state ma-
chine diagrams by means of
sequential synthesis. On the regis-
ter-transfer level (RTL), they can
describe the behavior of ASICs
with programs, algorithms, flow-
charts, dataflow graphs, instruction

tools and simulated to verify its func- | Designers can also use the captured | sets, or generalized FSMs in which each
tionality, timing, and fault coverage. | schematic to drive physical design tools | state performs arbitrarily complex com-
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putations. Then they can synthesize
these ASICs by means of high-level (or
behavioral) synthesis techniques.

High-level synthesis is a sequence of
tasks that transforms a behavioral rep-
resentation into an RTL design. The de-
sign consists of functional units such as
ALUs and multipliers, storage units such
as memories and register files, and in-
terconnection units such as multiplex-
ers and buses.

Figure 1 shows a generic high-level
synthesis system. The compiler converts
the behavioral description into an in-
ternal representation. The RTL library
contains the physical and simulation
models of components to be used dur-
ing synthesis. The netlister generates the
final RTL structure, consisting of a netlist
of RTL components and a simulation
model of each component. To verify the
svnthesized design’s correctness, the de-
signer can simulate the input descrip-
tion and the generated netlist by means
of the simulation environment, an ad-
junct to the high-level synthesis system.

The main advantages of high-level
svnthesis are productivity gains and bet-
ter design space exploration. It achieves
productivity gains by moving the design
process to higher abstraction levels,
where designers can specify, model, ver-
ify, synthesize, simulate, and debug de-
signs in less time. The automation :
provided by high-level synthesis ensures
a more systematic and efficient search
of the large design spaces created by the
shift to higher abstraction levels.

Input description

The input description specifies the in-
tent of the design. It is usually an algo-
rithmic description of design behavior
that does not contain structural infor-
mation such as component types and
their interconnections. Nor does it pro-
vide information about circuit structure,
such as the number of pipeline stages
or clock phases.

Designers usually write input de-
scriptions in a special language called
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Glossary

Allocation: determination of the type and quantity of resources to |mp|emenr a
design for given performance and area constraints

Binding (resource sharing): assignment of operations, memory accesses, and
interconnections from the behavioral design description to hardware units for
optimal area and performance

Chaining: the scheduling of two data-dependent operations in the same con-
trol step

Describe-and-synthesize: design paradigm in which a designer specifies the
intent of a design and uses automatic synthesis tools to implement the design at
the next-lower abstraction level

FSM: finite-state machine design model for representing controllers that assigns
Boolean constants to output signals in every clock cycle

FSMD: finite-state machine with dato path model for representation of control-
dominated and data-dominated designs that augments the FSM model with
variables and expressions that specify conditions and actions in each state
Multicycling: the scheduling of one operation in multiple clock cycles, enabling
the use of slower functional units with a faster clock

Resource-constrained scheduling: assignment of operations into control steps,
given the set of resources

Scheduling: the partitioning of design behavior into control steps such that all
operations in a control step execute in one clock cycle

Syntactic variance: description style differences that generate differences in de-
sign quality from semantically equivalent behaviors

Time-constrained scheduling: assignment of operations into control steps, giv-

en a fixed execution time
VHDL: o hardware description language (IEEE Std 1076-1987) used by design-
ers to describe design behavior and structure at various levels of abstraction

a hardware description language ! i

]

i tion of both design behavior and design
structure. Although the synthesis task

(HDL) Many HDLs support specifica-

becomes easier as the amount of struc-
tural detail increases, designers prefer
specifying behavior—much easier and
less time-consuming than specifying
structure.

To specify design behavior, typical

* HDLs provide a set of variables and a
i set of operations for computing the vari-

ables’ current values. Variable assign-
ment statemnents assign values to the
variables. Most languages provide con-
dition constructs such as if and case
statements, to allow conditional exe-
cution of the assignment statements.
Repeated iterations through a sequence

desciption constraints
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Figure 1. A generic high-level synthesis
system
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entity sqrt_part is A 1B 3
port (A B in integer); /01 NA
X :in bit); shD \ @1; 2
.Y : out integer); \ i’ c) g
end sqrt_part; \\D ‘>/03 /
\ £ //’
VS

architecture arch of sqrt_part is
begin

PO: process
variable C, D, E, F: integer;
variable Timer : integer,;

begin

wait until X = 1;

if (Timer '=0) then
D:=shr (A, 1);
C:=shr (B, 3);
E=B-C;
F:=D+E,
Y :=max (F, B);

else
Timer :=Timer- 1;
end if;
end process PO,
end architecture A;

Figure 2. Sample VHDL input description.

of statements can be specified with
loop statements.

Examples of languages used in high-
level synthesis include VHDL,' Hard-
wareC,? Verilog,® and Silage." Because
VHDL is an IEEE standard and is be-
coming popular among designers, it
has extensive commercial support.
Widely used for hardware description,
it can describe design behavior at sev-
eral abstraction levels. The language
supports sequential and concurrent as-

signments, conditional constructs, |
loops, procedures, and functions. :

However, it does not explicitly support

hardware pipelining, interrupts, and
" tions may differ significantly in quality.

hierarchical behavior.

Figure 2 shows a VHDL behavioral de-
scription. It consists of port and variable
declarations followed by a process that
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Figure 3. DFG representation.

encapsulates the design behavior. The
process has five local variables: C, D, E,

F, and Timer. The process waits until an |

external input X becomes 1, and then it
executes a series of assignment state-
ments if the value of Timer is not equal to
0. Because VHDL’s semantics are pri-
marily designed forsimulation, high-lev-
el synthesis with VHDL is difficult.

HardwareC is based on the widely
popular C language, augmented to sup-
port hardware features such as timing
and synchronization, but it suffers from
disadvantages similar to VHDL's. Silage
is an applicative language, designed
specifically to model dataflow applica-
tions. It provides explicit constructs for
modeling computations on data
streams, which are frequent in signal-
processing applications.

Designers can write the behavioral de-
scription in many different styles.
Although the styles are semantically
equivalent, they differ syntactically in
their use of certain language constructs.
Most high-level synthesis tools are very
sensitive to description style. Two designs
synthesized from two semantically equiv-
alent but syntactically different descrip-

The quality of the synthesized design de-
pends on the type and order of constructs
used in the description. This is known as

the problem of syntactic variance.

High-level synthesis systems have
used two approaches to solve the syn-
tactic variance problem. In the first ap-
proach, a set of modeling guidelines
restricts the input description style, to
achieve a unique input format. In the
second approach, the modeler is free to
use any convenient construct, but the
synthesis tool transforms all descriptions
into a unique internal form used during
synthesis.

Internal representation

The high-level synthesis system com-
piles the behavioral description into an
internal representation. All synthesis
tasks work from this representation.
There are several types of internal rep-
resentation. The most convenient type
is the one that matches the problem
most closely. For example, for a digital
filter, which repeatedly performs a se-
ries of operations on an infinite input
data stream, we want to represent the
data, the arithmetic operations, and the
read and write dependencies that de-
fine the order of execution. A dataflow
graph (DFG) is the best way to do this.

A DFG consists of a set of nodes, each
node representing one operation in the
original description. Two nodes o, and
o; are connected by an arc if there is a
data dependence between them (that
is, the result of operation o, is an input
to operation o;.). In other words, the de-
pendency arc connecting o, and o; in-
dicates that operation o cannot execute
before o, executes. Since the DFG rep-
resentation is based on data dependen-
cy alone, it is the most parallel
representation of the description. Figure
3 shows the DFG for the expression Y=
max{(Ashr 1) + (B— (Bshr 3)), B).

The DFG is not sufficient to represent
reactive or embedded systems, in
which the control sequence is based on
external conditions. In these cases, we
must represent the control flow in ad-
dition to data dependencies. We do this
by augmenting the DFG with control
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nodes. An example of an augmented
representation style is the control-
dataflow graph (CDFG), which allows
representation of control constructs
such as branches and loops. The CDFG
contains special nodes to represent if
conditions, case constructs and loops,
and computational sequences.

Figure 4 shows the CDFG representa-
tion for the VHDL description in Figure
2. In this example, the expression Y=
max((Ashr 1)+ (B—-(Bshr3)), B) com-
putes the value of Y only if an external
input X is asserted and Timer is not
equal to 0. The representation contains
await node that checks for assertion of
the external condition X. The if-begin
node checks that Timer is not equat to 0,
and the if-end node represents the end
of the branch statement. The actual
computation of the expression is em-
bedded in a basic (dataflow) block.

The CDFG representation maintains
the control structure specified by the de-
signer. The CDFG represents each block
of assignment statements in the original
behavioral description as a separate ba-
sic block. Data dependency information
is represented only within the basic
block; data dependencies across basic
blocks are not explicitly represented. A
synthesis system that works directly from
the CDFG representation must maintain
the basic-block structure. For example,
two operations in two sequential basic
blocks never execute together, although

they may not have any real dependen-
| 65,536 different states; thus, the intro-

cies. This is one of the major disadvan-
tages of using a CDFG representation
directly for synthesis.

We can make synthesis more efficient
by removing user-defined control con-
structs and introducing an execution or-
der based on data dependencies. This
would result in the least restricted and
most efficient internal representation.
The value trace® and ADD? design rep-
resentations incorporate these ideas.
They also solve the syntactic variance
problem by transforming the input de-
scription to a unique representation.
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High-level synthesis model

Logic synthesis is based on the for-
malism of Boolean algebra, whereas se-
quential synthesis is based on the FSM
model. For high-level synthesis, we ex-
tend the FSM model by adding variable
assignments.

The FSM model consists of a set.of
states, a set of transitions between
states, and a set of actions associated
with these states or transitions. More for-
mally, an FSM is a quintuple

<8510, F:5x1-S8, h:Sx[-0>

Here Sis a set of states, /is a set of input
values, O is a set of output values, and
fand h are next-state and output func-
tions that map a cross product of S and

i Iinto S and O, respectively. Functions

fand h can be specified with Boolean
equations, state tables, or state (bub-
ble) diagrams.

The FSM model works well for up to
several hundred states. Beyond that, the
model becomes incomprehensible to
human designers. Even low-complexity

components such as /O interfaces and |
{ bus controllers can have several thou-
. sand states if we count all storage ele-

ments. To adapt the FSM model for
more complex designs, we introduce a
set of integer and floating-point variables
stored in registers, register files, and
memories. Each variable replaces thou-
sands of different states. For example, a
16-bit integer variable represents 2'6 or

duction of a 16-bit variable reduces the
number of states in the FSM model by
65,536. The use of variables leads to the
concept of an FSM with a data path
(FSMD).

We formally define an FSMD as fol-
lows: A set of storage variables VAR, a
set of expressions EXP={f (x,¥,z, ...) |
X, ¥,2,...,€ VAR}, and a set of storage
assignments A={X<elXe VAR ee€
EXP}. We further define a set of status
signals as the logical relation between
two expressions from the set EXP, STAT

wait until X=1

Figure 4. CDFG representation.

={Rel(a, b) | a, b € EXP}. Given these
definitions, we define an FSMD as the
quintuple

<S, IxSTAT, OxA, f, h>

Here S is a set of states; we have ex-
tended the set of input values to include
status expressions and the output set to
include storage assignments. We define
fand h as mappings of Sx (Ix STAT) —
Sand Sx (/xSTAT) - (O x A) respec-
tively. Thus, the FSMD’s next state and
outputs depend not only on the present
state and the external signals but also
on internal status signals that indicate
whether a relation between two data
path quantities is true or false.

The FSMD computes new values for
variables stored in storage units in the
data path. In addition, the FSMD assigns
values of external signals. This is shown

a7



G ")

Ly Timer! = 0&X=1

L, :: D:=shr (A,1); C:=shr (B,3);
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Figure 5. FSMD: model {a) and implementation (b).

on the excerpt of the state diagram in
Figure 5a, where the expression L, in-
cludes external and status variables,
and L, includes variable assignments.
An FSMD is a universal model that
represents all hardware designs. It can
represent both control-dominated and
data-dominated designs. A control-
dominated design consists of a large
control unit, possibly with a small data
path. An example is a serial-to-parallel
converter, which could have a single
shift register as the data path. A data-
dominated design, such as an FIR (fi-
nite impulse response) filter, has
minimal control but a large data path
to perform the filtering operations.
The FSMD model is usually imple-
mented with a control unit and a data
path; each state in the model corre-
sponds to a clock cycle in the imple-
mentation. The control unit implements
the FSM model, using a state register
and two combinational logic circuits
that compute the value of the state reg-
ister for the next clock cycle (nextstate
function f) and the values of the output
and control signals (output function £).
Figure 5b shows these two combina-
tional blocks as next-state logic and
control logic. The data path imple-
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mentation consists of a set of storage
units (registers, counters, register files,
memories), a set of functional units
(ALUs, multipliers, shifters, compara-
tors), and a set of interconnection units
(wires, buses, multiplexers).

Pipelining the FSMD implementa-
tion increases performance. Figure 6
symbolically illustrates the following
three pipelining styles. Each changes
the design’s area and performance
characteristics.

m Component pipelining. To increase
the utilization of functional units
within the data path, designers
usually pipeline these units. Figure
6a shows an example in which the
ALU is pipelined into two stages.

m Control pipelining. The FSMD mod-
el performs three tasks in each
state: It computes control signals, it
computes a new value for one or
more variables stored in the stor-
age units, and it computes the next
state. Since these three tasks are re-
peated in each state, they can be
pipelined into three stages. To
achieve this pipelining effect, the
control and the status lines must
be latched as shown in Figure 6b.

The FSM must be restructured to
accommodate pipeline delay dur-
ing branching operations.

m Data path pipelining. In signal-
processing applications, the FSMD
model performs the same se-
quence of operations on each ele-
ment of an input data stream.
Since these operations execute re-
peatedly in the data path, we can
pipeline them as shown in Figure
6c. In this pipelining style, the con-
trol unit for each stage is usually
very simple or nonexistent.

Synthesis tasks

High-level synthesis maps a behav-
ioral description into the FSMD model
so that the data path executes variable
assignments and the control unit im-
plements the control constructs. Since
the FSMD model determines the
amount of computation in each state,
we must first define the number and
type of resources (storage units, func-
tional units, and interconnection units)
to be used in the data path. Allocation
is the task of defining necessary re-
sources for a given design constraint.

The next task in mapping a behav-
ioral description into an FSMD model
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is to partition the behavioral description
into states (or control steps) so that the
allocated resources can compute all
the variable assignments in each state.
This partitioning of behavior into time
intervals is called scheduling.

Although scheduling assigns each
operation to a particular state, it does
not assign it to a particular component.
To obtain the proper implementation,
we assign each variable to a storage
unit, each operation to a functional
unit, and each transfer from [/O ports to
units and among units to an intercon-
nection unit. This task is called binding
(or resource sharing).

Binding defines the structure of the
data path but not the structure of the
control unit. The final task, control syn-
thesis, consists of reducing and encod-
ing states and deriving the logic network

for nextstate and control signals in the

control unit. Control synthesis employs
wellknown logic synthesis and FSM syn-
thesis techniques outside the scope of
this article (see De Micheli").

Allocation. The allocation task de-
termines the type and quantity of re-
sources used in the chip architecture.

fE—
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Next-state
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Control
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file '

Control unit
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Control inputs

Next-state
logic
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Register

Data outputs

Data inputs

Register
file

| Register

|
y :
ALY :

' Control unit

Data outputs

It also determines the clocking scheme,
memory hierarchy, and pipelining style.

The goal of allocation is to make ap-
propriate trade-offs between the de-
sign's cost and performance. If the
original description contains inherent
parallelism, allocating more hardware
resources increases area and cost, but
it also creates more opportunities for
parallel operations or storage accesses,
resulting in better performance. On the
other hand, allocating fewer resources
decreases area and cost, but it also
forces operations to execute sequen-
tially, resulting in poorer performance.

To perform the required trade-offs, al-

(b) Control outputs

Control inputs

r ¥

logic

Control
logic

lings i

Data inputs

Register
file

logic

o

[,

g Next-state
w

Control
logic

) S— |

Control unit

Control.
lines 1

location must determine the exact area !
and performance values. A simple ap- © " comroloutputs Data outputs

proximation of cost and performance
consists of the number of functional
units and the number of control steps,

Data path

Figure 6. Pipelined FSMD model: component pipelining {a), control pipelining (b}, and
data path pipelining {c).
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Table 1. An RTL library.

Table 2. Possible allocations for DFG in Figure 3.

Area
{m?)

Delay
(ns)

Components
(operations)

No. of

Allocation ALU-F

No. of
ALU-S

{um?)

ALU-F (+/~/shr}
ALU-S (+/~/shr)
MAX (max)

20
70
80

600
400
800

respectively. We can arrive at a more
accurate estimate by means of the phys-
ical models stored in the RTL library.

Table 1 shows a library containing three -

components; two ALU implementa-
tions (ALU-F and ALU-S), which per-
form the shift, add, and subtract
operations, and MAX, which performs
the max operation. ALU-F is fast, capa-
ble of executing an operation in 20 ns;
ALU-S takes 70 ns to complete the op-
eration but is smaller and cheaper.
Using this library, we can obtain area
and performance trade-offs for our ear-
lier example. Table 2 shows five alloca-
tions of functional units for the DFG in
Figure 3. A simple estimate of the area
for each allocation choice consists of the
sum of the areas of the individual library
components. We can also estimate the
performance for each allocation, as
shown in Figure 7. The figure shows that
allocation A consumes the smallest area
but results in the worst performance.
Allocation E produces the best perfor-
mance but most expensive design. OQur

selection of one of the five allocations !

for further synthesis would depend on
the criticality of the application.

We can compute similar curves to
determine the trade-offs between per-
formance and number of storage units,
number of ports on each storage unit,
and number of interconnection units.

By selecting appropriate points on these -

curves, we determine the optimal num-
ber of resources of each type.

Instead of searching automatically
through the large design space, most of
today'’s high-level synthesis systems al-
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Figure 7. Area-performance trade-off curve for possible allocations listed in Table 2.

low the user to allocate the type and
mix of hardware resources. To help the
designer make the right choice, the al-
location tool must provide metrics that
accurately reflect area, performance,
clock slack, and resource usage.

In the future, allocation algorithms
will require improvements for exploring
more complex but more realistic archi-
tectural styles. To broaden the scope of
high-level synthesis for different appli-
cation domains, allocation algorithms
supporting multiple pipelining styles,
memory hierarchies, and interconnec-
tion topologies will be necessary.

Scheduling. The next step sched-
ules operations and memory accesses
into clock cycles. Scheduling algo-
rithms are of two types, based on the op-

timization goal and the specified con-
straints. If the user has completely spec-
ified all the available resources and the
clock cycle length during allocation,
the scheduling algorithm’s goal is to
produce a design with the best possible
performance, or the fewest clock cy-
cles. In other words, scheduling must
maximize usage of the allocated re-
sources. We call this approach re-
source-constrained scheduling. If a list
of resources is not available prior to
scheduling, but a desired overall per-
formance is specified, the scheduling

| algorithm’s goal is to produce a design

with the lowest possible cost, or the
fewest functional units. This is the time-
constrained scheduling approach.
Resource-constrained scheduling
usually constructs the schedule one
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state at a time. It schedules operations
50 as not to exceed resource constraints
or violate data dependencies. It ensures
that at the instant for which it schedules
an operation o, into control step s, a re-
source capable of executing o, is avail-
able and all the predecessors of node
o, have been scheduled.

In the example described earlier, the
allocation task determined that two fast
ALUs (ALU-F) and one MAX unit are
necessary to achieve an estimated per-
formance of 200 ns. Let us attempt to
schedule our example with this alloca-
tion (allocation E) and a clock cycle of
50 ns. The algorithm can schedule both
shift operations (0, and 0,) in the first
control step, since they are not depen-
dent on any prior operations and two
ALUs are available. When the algorithm
schedules nodes in the second control
step, it determines that both the addition
operation 0; and the subtraction opera-
tion o, can be scheduled, since two fast
ALUs are available. The MAX node can-
not be scheduled until its predecessor
(operation 0,) computes the result, and
hence it is scheduled in the next state.
Figure 8 shows the final schedule.

In Figure 8, operations o, and o, are
scheduled in the same state although
they are dependent nodes. This process
of scheduling two dependent nodes
into the same state is called chaining; it
is possible only if sufficient components
are available and component delays
are shorter than the clock cycle. In our
example, the allocated ALUs have a de-
lay of 20 ns and two ALUs are available,
so we can chain the add and subtract
operations operating under a clock pe-
riod of 50 ns.

The opposite effect occurs if the unit
delay is longer than the clock cycle. The
scheduler must allow several states for
the operations to complete. The MAX
component has a delay of 80 ns, while
the clock period is only 50 ns. Thus, op-
eration o5 requires two clock cycles to
complete. Scheduling in which opera-
tions take more than one clock cycle to
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complete is called multicycling.

In time-constrained scheduling, the
maximum number of control steps
available for operations is fixed. Based
on this performance constraint and the
dependency constraints, we can com-
pute the earliest control step e; and the
latest control step /; into which a node
0, can be scheduled. Using the ¢;and /;
bounds for all nodes, we can estimate
the maximum number of functional
units or the cost of the design. Time-
constrained scheduling algorithms se-
lect a node o, evaluate the cost of
scheduling it in each control step be-
tween e;and /, and select the state s; that
results in the least cost. The important
goal is to minimize the number of func-
tional units in any time step.

These basic scheduling algorithms
become very complex in real-world sit-
uations. Actual libraries can have mul-
tiple implementations of the same
component, each with its own area and
delay characteristics. Scheduling must
ensure that the design uses faster func-
tional units for operations on the criti-
cal path and slower units for operations
outside the critical path.

A great deal of research effort has fo-
cused on both resource-constrained
and time-constrained scheduling. Sev-
eral books on high-level synthesis pro-
vide details of the important work in
scheduling.>™* We hope to see this
work extended to incorporate more re-
alistic architectures, realistic libraries,
data path and control pipelining, and
memory hierarchy.

Binding. The binding task assigns
the operations and memory accesses
within each clock cycle to available
hardware units. A resource such as a
functional, storage, or interconnection
unit can be shared by different opera-
tions, data accesses, or data transfers if
they are mutually exclusive. For exam-
ple, two operations assigned to two dif-
ferent control steps are mutually
exclusive since they will never execute
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Figure 8. Example schedule based on
allocation E.

simultaneously; hence they can be
bound to the same hardware unit.

Binding consists of three subtasks
based on the unit type:

m Storage binding assigns variables to
storage units. Storage units can be
of many types, including registers,
register files, and memory units.
Two variables that are not alive si-
multaneously in a given state can
be assigned to the same register.
Two variables that are not ac-
cessed simultaneously in a given
state can be assigned to the same
port of a register file or memory.

m Functional-unit binding assigns each
operation in a control step to a
functional unit. A functional unit or
a pipeline stage can execute only
one operation per clock cycle.

m Interconnection binding assigns an
interconnection unit such as a
multiplexer or bus for each data
transfer among ports, functional
units, and storage units.

Although listed separately here, the
three subtasks are intertwined and
must be carried out concurrently for
optimal results.
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Figure 9. Storage binding: variable
lifetimes (a), compatibility graph (b), and
possible solutions fc).

We illustrate the binding process with

the example scheduled in Figure 8. To
bind the variables onto registers, we
must partition all the variables in the de-
scription into compatible sets. A set of
variables is compatible if all the vari-
ables in the set are not alive at the same
time. To determine the compatible sets,
we must determine the lifetimes of the
variables, as shown in Figure 9a. From
the lifetimes, we create a compatibility
graph, in which each node represents a
variable, and an edge connects two vari-
ables with mutually exclusive lifetimes.
In our example, variables C and D are
written in state 1 and read in state 2, vari-
able £'is written and read in state 2, and
variable Fis written in state 2 and read
in states 3 and 4. Figure 9b shows the
compatibility graph for these variables.

Next, the compatibility graph must
be partitioned into cliques. A clique is
a fully connected subgraph—in other
words, a subgraph containing several
nodes, each node connected to all its

52/

o
ey

04,03

Choice 2

{c)
Figure 10. Functional-unit binding:
partial design after binding operations in
state 1 (a); state 2, choice 1 {b); and state
2, choice 2 (c).

neighbors. A clique indicates a set of
mutualty exclusive nodes that can be
bound to the same resource.

For our example, a clique partition
of the compatibility graph results in two
possible solutions, shown in Figure 9c.
Both solutions require two registers for
storing the four variables. The first so-
lution uses register R1 to store variables
Cand Fand register R2 to store variable
D. Variable £ does not require storage
because it is not alive over a state
boundary and is implemented with a
wire connection.

The next task in the binding process
is functional-unit binding, which assigns
the operations in each state to the allo-
cated functional units. We can construct
asolution to the functional-unit binding

problem one state at a time. The first
state provides two binding choices,
since both operations o, and o, can be
bound to either of the available ALUs.
Assume that o, is bound to the first and
0, is bound to the second. Figure 10a
shows the partial design after binding of
the operations in the first state.

The binding process continues for
operations in the second state. Since
state 2 has two operations, o, and o,,

" and both ALUs are capable of execut-

ing both operations, we have two dif-
ferent choices: bind o, to ALU1 and o,
to ALU2 orvice versa. Figure 10b shows
the resulting partial design for the first
choice. New connections are shown in
bold lines. The design requires four ad-

¢ ditional two-input multiplexers or eight

new tristate drivers to complete the par-
tial binding of states 1 and 2. Figure 10c
shows the result of the second choice:
Three additional multiplexers or six tris-
tate drivers are sufficient because the
connection from B to the second ALU is
reused. Thus, the second choice leads
to a more optimal design.

However, this binding algorithm uses
a “greedy” approach and could lead to
suboptimal solutions. The high-level
synthesis books detail other binding ap-
proaches.>"#

Binding can reduce the design’s
wiring area by storing variables in reg-
ular structures such as register files or
n-port memories instead of in distrib-
uted registers. The algorithm achieves
this by mapping all the scalar variables
on a scheduled flow graph into a mini-
mal set of register files based on the vari-
ables’ access patterns.

If array variables are present in the
description, simple binding algorithms
proceed by mapping each array vari-
able into a separate memory module of
the same dimensions as the array vari-
able. This approach is unacceptable be-
cause it leads to inefficient designs. A
more efficient approach is to cluster
many array variables into a single
memory module. This leads to a solu-
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tion with fewer memory modules and
fewer ports; the reduction in ports re-
duces the size of the memory modules.
However, the clustering of array vari-
ables requires an address translation for
array access, thereby degrading perfor-
mance. Researchers must develop al-
gorithms capable of binding variables
into a hierarchical memory organiza-
tion containing caches, register files,
and memories.

Design methodology. In a typical
design environment, high-level synthe-
sis can be part of a top-down or a bot-
tom-up design methodology. Following
a top-down methodology, the designer
synthesizes the behavioral description
into an RTL netlist, using a generic li-
brary of parameterized components.
Since the components are parameter-
ized, they may not exist during the high-
level synthesis phase. However, an
estimate of the area and delay and a list
of the control and data ports are suffi-
cient to complete high-level synthesis.
Each component in the synthesized
RTL netlist is designed at a later time by
means of logic synthesis and technolo-
gy mapping.

The top-down methodology is suit-
able for gate arrays and standard-cell-
based designs, which must be
completely flattened to the gate-level
structure during layout. After the flat-
tening, the layout process may place
the components of the flattened netlist
in different parts of the design, making
it difficult to predict accurately the de-
sign’s area and delay.

In a bottom-up methodology, high-
level synthesis uses a library of pre-
designed components. Thus, the exact
shape, size, and timing of components
are known during high-level synthesis.
High-level synthesis uses this informa-
tion to predict various design parame-
ters such as the clock period and floor
plan. This methodology is useful for cus-
tom designs that combine predesigned
components to build the system.
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A mixture of the top-down and bot-
tom-up methodologies would be ideal
in all design environments. The top-
down methodology allows rapid ex-
ploration techniques during the early
design-planning phases. The bottom-up
methodology allows optimization dur-
ing the final layout phases.

Future directions

With no limitations in sight on the
growth of ASICs, designers need new
design methods to cope with ASIC com-
plexities. High-level synthesis deals with
these complexities by allowing design
at higher abstraction levels. Several
tools available from universities and re-
search organizations demonstrate the
potential of high-level synthesis, espe-
cially for specialized applications such
as signal and image processing.

Despite this potential, designers use
high-level synthesis sporadically, owing
mainly to insufficient designer training,
the lack of a clearly defined methodol-
ogy, and insufficient offerings from the
design automation industry. Now, how-
ever, several vendors are developing a
new generation of synthesis tools em-
bodying the concepts discussed here.
These tools should help make high-
level synthesis an integral part of the de-
sign process.

Although high-level synthesis promis-
es to reduce time to market and gener-
ate high-quality designs, it is not a
panacea. For example, its use in mi-
croprocessor design may be limited be-
cause in specifying the instruction set
and the architecture, the designer has
already completed scheduling and
binding. Also, in the highly competitive
microprocessor industry, the use of au-
tomated CAD tools may not be efficient.
[nstead, manual optimization is neces-
sary to extract every bit of performance
from the design. Furthermore, micro-
processors are heavily pipelined with
instruction look-ahead, and many syn-
thesis tools do not adequately handle
such advanced architectural features.

WIDE ACCEPTANCE OF high-level syn-
thesis will depend on how well the re-
maining open problems are solved.
Among the most important are the fol-
lowing:

m Syntactic variance. The results of
high-level synthesis must not de-
pend on the description style.
Eliminating syntactic variance
would ensure that designers who
are not proficient in HDL model-
ing and who don’t understand
high-level synthesis algorithms ob-
tain satisfactory designs from high-
level synthesis tools.

m Interactivity. A lack of interactivity
in high-level synthesis tools makes
it difficult for designers to control
the design process and produce
the designs they want. The design
community does not accept push-
button solutions.

m Libraries. Synthesis tools must be
capable of using a wide variety of
user-defined libraries and cores.
Without library transparency, syn-
thesis algorithms must be tuned to
aspecific library, making tool main-
tenance difficult.

m Interfaces to lower levels. Designers
must consider the layout implica-
tions of any architectural choices
made by high-level synthesis.
Thus, tools that enable interaction
with logic and layout tools and
that provide accurate estimation
techniques would greatly improve
the quality of synthesized designs.

The future tutorials in this series will dis-
cuss the principles of high-level synthesis
in more detail and evaluate proposed so-
lutions of its basic problems.
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