
Introduction to 
High-Level Synthesis 

TODAY’S VLSl TECHNOLOGY 
allows companies to build large, 
complex systems containing mil- 
lions of transistors on a single chip. 
1’0 exploit this technology, de- 
signers need sophisticated CAD 
tools that enable them to manage 
millions of transistors efficiently. 

Until recently, most ASIC (appli- 
i (.ation-specific IC) and system 
I tiouses used a capture-and-simu- 

ldte design methodology. Follow- 
ing this methodology, the design 
department starts with a specific set 
of product requirements, usually 
supplied by the marketing depart- 
rnent. Since these requirements 
contain no information about im- 
plementation of the product, a 
team of chief architects produces 
a rough block diagram of the chip 
architecture, which serves as a pre- 
Iiminaly, incomplete specification. 
In some cases, the architects fur- 
ther refine this initial block dia- 
gram before giving it to a team of 
logic and layout designers. 

The logic and layout designers 
( onverteach functional block into 
a logic or circuit schematic. which 
is captured by schematic-capture 

I 

~ 

DANIEL D. GAJSKI 

LOGANATH 

RAMACHANDRAN 

University of California, Irvine 

The basic problem of high-level 
synthesis i s  the mapping of a 

behavioral description of a digital 
system into an RTL design 

consisting of a data path and a 
control unit. The authors introduce 
the FSMD model, which forms the 

basis for synthesis. They discuss the 
main considerations in a high-level 

synthesis environment: the input 
description language, the internal 

representation, and the main 
synthesis tasks-allocation, 

scheduling, and binding. They 
conclude with some problems that 
must be solved to make high-level 

synthesis a widely accepted 
methodology. 

I 

for placement and routing of gates 
in gate-array technologies, or to 
map gates into standard or custom 
cells before placement and routing 
in custom technologies. 

Only in the last few years has log- 
ic synthesis become recognized as 
an integral part of the design 
process, leading to an evolution in 
methodology from capture-andsim- 
ulate to describe-and-synthesize. 
The new methodology’s advantage 
is that it allows us to describe a de- 
sign in a purely behavioral form, de- 
void of implementation details, and 
then to synthesize the design struc- 
ture with CAD tools. 

Designers can apply the de- 
scribe-andsynthesize methodolo- 
gy on several levels of abstraction. 
On the gate level, they can synthe- 
size functional and control unit log- 
ic by means of combinational logic 
synthesis. They also can synthesize 
controllers from finite-state ma- 
chine diagrams by means of 
sequential synthesis. On the regis- 
ter-transfer level (RTL), they can 
describe the behavior of ASICs 
with programs, algorithms, flow- 
charts, dataflow graphs, instruction 

tools and simulated to verify its func- 
tionality, timing, and fault coverage. 

Designers can also use the captured 
schematic to drive physical design tools 

sets, or generalized FSMS in which each 
state performs arbitrarily complex com- 

44 0740-7475/94/$04 0 0 0  1994 IEEE IEEE DESIGN & TEST OF COMPUTERS 



putations. Then they can synthesize 
these ASICs by means of high-level (or 
behavioral) synthesis techniques. 

High-level synthesis is a sequence of 
t a k s  that transforms a behavioral rep- 
resentation into an RTL design. The de- 
sign consists of functional units such as 
ALUs and multipliers, storage unitssuch 
as memories and register files, and in- 
terconnection units such as multiplex- 
ers and buses. 

Figure 1 shows a generic high-level 
synthesis system. The compiler converts 
the behavioral description into an in- 
ternal representation. The RTL libraty 
contains the physical and simulation 
models of components to be used dur- 
ing synthesis. The netlister generates the 
final RTLstructure, consisting of a netlist 
of RTL components and a simulation 
niodel of each component. To verify the 
synthesized design’s correctness, the d e  
signer can simulate the input descrip- 
tion and the generated netlist by means 
of the simulation environment, an ad- 
junct to the high-level synthesis system. 

The main advantages of high-level 
synthesis are productivity gains and bet- 
ter design space exploration. It achieves 
productivity gains by moving the design 
process to higher abstraction levels. 
where designers can specify. model, ver- 
ifv. synthesize, simulate, and debug de- 
signs in less time. The automation 
provided by high-level synthesis ensures 
a more systematic and efficient search 
of the large design spaces created by the 
shift to higher abstraction levels. 

Input description 
The input description specifies the in- 

tent of the design. I t  is usually an algc- 
rithmic description of design behavior 
that does not contain structural infor- 
mation such as component types and 
their interconnections. Nor does it  pro- 
vide information about circuit structure, 
such as the number of pipeline stages 
ot- clock phases. 

Designers usually write input de- 
scriptions in a special language called 
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Glossary 

Allocation: determination OF the type and quantity of resources to implement a 
design for given performance and area constraints 
Binding (resource sharing): assignment of operations, memory accesses, and 
interconnections from the behavioral design description to hardware units for 
optimal area and performance 
Chaining: the scheduling of two data-dependent operations in the same con- 
trol step 
Dexribe-and-synthesize: design paradigm in which a designer specifies the 
intent of a design and uses automatic synthesis tools to implement the design at 
the next-lower abstraction level 
FSM: finite-state machine design model for representing controllers that assigns 
Boolean constants to output signals in every clock cycle 
FSMD: finite-state machine with data path model for representation of control- 
dominated and data-dominated designs that augments the FSM model with 
variables and expressions that specify conditions and actions in each state 
Mulricycling: the scheduling of one operation in multiple clock cycles, enabling 
the use of slower functional units with a faster clock 
Resource-constrained scheduling: assignment of operations into control steps, 
given the set of resources 
Scheduling: the partitioning of design behavior into control steps such that all 
operations in a control step execute in one clock cycle 
Syntactic variance: description style differences that generate differences in de- 
sign quality from semantically equivalent behaviors 
Time-constmined scheduling: assignment of operations into control steps, giv- 
en a fixed execution time 
VHDL: a hardware description language (IEEE Std 1076-1 987) used by design- 
ers to describe design behavior and structure at various levels of abstraction 

- T - ____ ----- -_____--____I_ 

i a hardware description language I ~ 

(HDL). Many HDLs support specifica- 
tion of both design behavior and design 
structure. Although the synthesis task 
becomes easier as the amount of struc- ’ ’ 5 
tural detail increases, designers prefer 
specifying behavior-much easier and 
less time-consuming than specifying 5 
structure. 0 

To specify design beha\ ior, typical 
HDLs provide a set of variables and a 
set of operations for computing the vari- 
ables’ current values. Variable assign- 
ment statements assign values to the 
variables. Most languages provide con- 
dition constructs such as i f  and case 

1 1  

statements, to allow conditional exe- 
cution of the assignment statements. 
Repeated iterations through a sequence 

Figure 1 -  A generic h h - l e v e l  syrlhflsis 
s)(stern 
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entity sqrt-part is 

X : in bit); 
Y : out integer); 

port (A,B : in integer); 

end sqrt-part; 

architecture arch of sqrt-part is 
begin 

PO: process 
variable C, D, E, F : integer; 
variable Timer : integer; 

begin 
wait until X =  1; 
if (Timer != 0) then 

D + shr (A, 1); 
C := shr (B, 3); 
E:=B -C;  
F : = D + E  
Y := max (F, B); 

else 

end if; 
Timer :=Timer - 1 ; 

end process PO; 
end architecture A; 

Figure 2. Sample VHDL input description. 

of statements can be specified with 
loop statements. 

Examples of languages used in high- 
level synthesis include VHDL,' Hard- 
wareC,2 Verilog;' and Silage. ' Because 
VHDL is an IEEE standard and is be- 
coming popular among designers, it  
has extensive commercial support. 
Widely used for hardware description, 
it can describe design behavior at sev- 
eral abstraction levels. The language 
supports sequential and concurrent as- 
signments, conditional constructs, 
loops, procedures, and functions. 
However. it does not explicitly support 
hardware pipelining, interrupts, and 
hierarchical behavior. 

Figure 2 shows a VHDL behavioral d e  
scription. It consists of port and variable 
declarations followed by a process that 

Figure 3. DFG representation. 

the problem of syntactic variance. 
High-level synthesis systems have 

used two approaches to solve the syn- 
tactic variance problem. In the first ap- 
proach, a set of modeling guidelines 
restricts the input description style, to 
achieve a unique input format. In the 
second approach, the modeler is free to 
use any convenient construct, but the 
synthesis tool transforms all descriptions 
into a unique internal form used during 
synthesis. 

In terna I representation 
The high-level synthesis system corn- 

piles the behavioral description into an 
internal representation. All synthesis 
tasks work from this representation. 
There are several types of internal rep- 
resentation. The most convenient type 
is the one that matches the problem 

encapsulates the design behavior. The 
process has five local variables: C, D, E, 
F. and Timer. The process waits until an 
external input X becomes 1, and then it 
executes a series of assignment state- 
ments if the value of Timer is not equal to 
0. Because VHDL's semantics are pri- 
marily designed for simulation, high-lev- 
el synthesis with VHDL is difficult. 

HardwareC is based on the widely 
popular C language. augmented to sup- 
port hardware features such as timing 
and synchronization, but it suffers from 
disadvantages similar to VHDLs. Silage 
is an applicative language, designed 
specifically to model dataflow applica- 
tions. It provides explicit constructs for 
modeling computations on data 
streams, which are frequent in signal- 
processing applications. 

Designers can write the behavioral d e  
scription in many different styles. 
Although the styles are semantically 
equivalent, they differ syntactically in 
their use of certain language constructs. 
Most high-level synthesis tools are very 
sensitive to description style. Two designs 
synthesized from two semantically equiv- 
alent but syntactically different descrip 
tions may differ significantly in quality. 
The quality of the synthesized design de- 
pends on the type and order of constructs 
used in the description. This is known as 

most closely. For example, for a digital 
filter, which repeatedly performs a se- 
ries of operations on an infinite input 
data stream, we want to represent the 
data, the arithmetic operations, and the 
read and write dependencies that de- 
fine the order of execution. A dataflow 
graph (DFG) is the best way to do this. 

A DFG consists of a set of nodes, each 
node representing one operation in the 
original description. Two nodes 0, and 
0, are connected by an arc if there is a 
data dependence between them (that 
is, the result of operation 0, is an input 
to operation oi.). In other words, the de- 
pendency arc connecting o, and 0, in- 
dicates that operation oi cannot execute 
before 0, executes. Since the DFG rep- 
resentation is based on data dependen- 
cy alone, it is the most parallel 
representation of the description. Figure 
3 shows the DFG for the expression Y = 
max((A shr 1) + (B - (f? shr 3)), B). 

The DFG is not sufficient to represent 
reactive or embedded systems, in 
which the control sequence is based on 
external conditions. In these cases, we 
must represent the control flow in ad- 
dition to data dependencies. We do this 
by augmenting the DFG with control 
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nodes. An example of an augmented 
representation style is the control- 
dataflow graph (CDFG), which allows 
representation of control constructs 
such as branches and loops. The CDFG 
contains special nodes to represent if 
conditions, case constructs and loops, 
and computational sequences. 

Figure 4 shows the CDFG representa- 
tion for the VHDL description in Figure 
2. In this example, the expression Y = 
max((Ashr l)+(B-(Bshr3)),B)corn- 
putes the value of Y only if an external 
input X is asserted and Timer is not 
equal to 0. The representation contains 
a wait node that checks for assertion of 
the external condition X. The if-begin 
node checks that Timer is not equal to 0, 
and the ifend node represents the end 
of the branch statement. The actual 
computation of the expression is em- 
bedded in a basic (dataflow) block. 

The CDFG representation maintains 
the control structure specified by the d e  
signer. The CDFG represents each block 
of assignment statements in the original 
behavioral description as a separate ba- 
sic block. Data dependency information 
is represented only within the basic 
block; data dependencies across basic 
blocks are not explicitly represented. A 
synthesis system that works directly from 
the CDFG representation must maintain 
the basic-block structure. For example, 
two operations in two sequential basic 
blocks never execute together, although 
they may not have any real dependen- 
cies. This is one of the major disadvan- 
tages of using a CDFG representation 
directly for synthesis. 

We can make synthesis more efficient 
by removing userdefined control con- 
structs and introducing an execution or- 
der based on data dependencies. This 
would result in the least restricted and 
most efficient internal representation. 
The value trace5 and ADD6 design rep 
resentations incorporate these ideas. 
They also solve the syntactic variance 
problem by transforming the input de- 
scription to a unique representation. 

High-level synthesis model 
Logic synthesis is based on the for- 

malism of Boolean algebra, whereas s e  
quential synthesis is based on the FSM 
model. For high-level synthesis, we ex- 
tend the FSM model by adding variable 
assignments. 

The FSM model consists of a set.of 
states, a set of transitions between 
states, and a set of actions associated 
with these states or transitions. More for- 
mally, an FSM is a quintuple 

<S,I,O, f : S x l + S ,  h : S x l + O >  

Here S is a set of states, lis a set of input 
values, 0 is a set of output values, and 
fand h are next-state and output func- 
tions that map a cross product of Sand 
l into Sand 0, respectively. Functions 
fand h can be specified with Boolean 
equations, state tables, or state (bub- 
ble) diagrams. 

The FSM model works well for up to 
several hundred states. Beyond that, the 
model becomes incomprehensible to 
human designers. Even lowcomplexity 
components such as I/O interfaces and 
bus controllers can have several thou- 
sand states if we count all storage ele- 
ments. To adapt the FSM model for 
more complex designs, we introduce a 
set of integer and floating-point variables 
stored in registers, register files, and 
memories. Each variable replaces thou- 
sands of different states. For example, a 
16-bit integer variable represents 216 or 
65,536 different states; thus, the intro- 
duction of a 16-bit variable reduces the 
number of states in the FSM model by 
65,536. The use of variables leads to the 
concept of an FSM with a data path 
(FSMD). 

We formally define an FSMD as fol- 
lows: A set of storage variables VAR, a 
set of expressions EXf = {f (x, y, 2, . . .) I 
x, y ,  z, . . ., E VAR}, and a set of storage 
assignments A = {X e e I X E VAR, e E 
EW). We further define a set of status 
signals as the logical relation between 
two expressions from the set EXf, STAT 

if-end 7 
Figure 4. CDFC representation. 

= {Re/(a, b) I a, b E EXf]. Given these 
definitions, we define an FSMD as the 
quintuple 

<S,IxSTAT, O x A ,  f, h >  

Here S is a set of states; we have ex- 
tended the set of input values to include 
status expressions and the output set to 
include storage assignments. We define 
fandhasmappingsofSx (IxSTAT) + 
Sand S x ( I  x STA 7) + (0 x A) respec- 
tively. Thus, the FSMD's next state and 
outputs depend not only on the present 
state and the external signals but also 
on internal status signals that indicate 
whether a relation between two data 
path quantities is true or false. 

The FSMD computes new values for 
variables stored in storage units in the 
data path. In addition, the FSMD assigns 
values of external signals. This is shown 
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L, :: T i m e r !  = O & X = l  

L, :: D:=shr  ( A , I ) ;  C:=shr  ( B , 3 ) ;  

FSMD model 

(b) 

Figure 5. FSMD: model (a) and implementation lb]. 

Control inputs Data inputs 
r.._..._......~............~....~ 

1 4 
Register 

file 

V 
ALU 

Register 
. I  

~ Control unit 1 i j Data path . .  ,_...............~.....-......~....~........ 
Control outputs Data outputs 

on the excerpt of the state diagram in 
Figure 5a, where the expression L, in- 
cludes external and status variables, 
and L, includes variable assignments. 

An FSMD is a universal model that 
represents all hardware designs. It can 
represent both control-dominated and 
data-dominated designs. A control- 
dominated design consists of a large 
control unit, possibly with a small data 
path. An example is a serial-to-parallel 
converter, which could have a single 
shift register as the data path. A data- 
dominated design, such as an FIR (fi- 
nite impulse response) filter, has 
minimal control but a large data path 
to perform the filtering operations. 

The FSMD model is usually imple- 
mented with a control unit and a data 
path; each state in the model corre- 
sponds to a clock cycle in the imple- 
mentation. The control unit implements 
the FSM model, using a state register 
and two combinational logic circuits 
that compute the value of the state reg- 
ister for the next clock cycle (nextstate 
function f )  and the values of the output 
and control signals (output function h). 
Figure 5b shows these two combina- 
tional blocks as next-state logic and 
control logic. The data path imple- 

mentation consists of a set of storage 
units (registers, counters, register files, 
memories), a set of functional units 
(ALUs, multipliers, shifters, compara- 
tors), and a set of interconnection units 
(wires, buses, multiplexers). 

Pipelining the FSMD implementa- 
tion increases performance. Figure 6 
symbolically illustrates the following 
three pipelining styles. Each changes 
the design’s area and performance 
characteristics. 

w Componentpipelining. To increase 
the utilization of functional units 
within the data path, designers 
usually pipeline these units. Figure 
6a shows an example in which the 
ALU is pipelined into two stages. 

w Controlpipelining. The FSMD mod- 
el performs three tasks in each 
state: It computes control signals, it 
computes a new value for one or 
more variables stored in the stor- 
age units, and it computes the next 
state. Since these three tasks are r e  
peated in each state, they can be 
pipelined into three stages. To 
achieve this pipelining effect, the 
control and the status lines must 
be latched as shown in Figure 6b. 

The FSM must be restructured to 
accommodate pipeline delay dur- 
ing branching operations. 

w Data path pipelining. In signal- 
processing applications, the FSMD 
model performs the same se- 
quence of operations on each ele- 
ment of an input data stream. 
Since these operations execute re- 
peatedly in the data path, we can 
pipeline them as shown in Figure 
6c. In this pipelining style, the con- 
trol unit for each stage is usually 
very simple or nonexistent. 

Synthesis tasks 
High-level synthesis maps a behav- 

ioral description into the FSMD model 
so that the data path executes variable 
assignments and the control unit im- 
plements the control constructs. Since 
the FSMD model determines the 
amount of computation in each state, 
we must first define the number and 
type of resources (storage units, func- 
tional units, and interconnection units) 
to be used in the data path. Allocation 
is the task of defining necessary re- 
sources for a given design constraint. 

The next task in mapping a behav- 
ioral description into an FSMD model 

46 IEEE DESION C TEST OF COMPUTERS 



Data inputs 
~........_.-~........ 

is to partition the behavioral description 
into states (or control steps) so that the 
allocated resources can compute all 
the vqriable assignments in each state. 
This partitioning of behavior into time 
intervals is called scheduling. 

Although scheduling assigns each 
operation to a particular state, it does 
not assign it to a particular component. 
To obtain the proper implementation, 
we assign each variable to a storage 
unit, each operation to a functional 
unit, and each transfer from I/O ports to 
units and among units to an intercon- 
nection unit. This task is called binding 
(or resource sharing). 

Binding defines the structure of the 
data path but not the structure of the 
control unit. The final task, control syn- 
thesis, consists of reducing and encod- 
ing states and deriving the logic network 
for nextstate and control signals in the 
control unit. Control synthesis employs 
well-known logic synthesis and E M  syn- 
thesis techniques outside the scope of 
this article (see De Micheli7). 

Control inputs 
.................................. 

I r -  . . . . . . , 

S I  
I ,  I ,  

Control j j * I  State register lines 

Register] 

1 1 
Next-state Control -: 

logic logic 

t Status 
lines 

Next-state 
logic logic 

Status 
lines 

Control outputs Data outputs 

Next-state 
logic 

Allocation. The allocation task de- 
termines the type and quantity of re- 
sources used in the chip architecture. 
It also determines the clocking scheme, 
memory hierarchy, and pipelining style. 

The goal of allocation is to make a p  
propriate trade-offs between the de- 
sign's cost and performance. I f  the 
original description contains inherent 
parallelism, allocating more hardware 
resources increases area and cost, but 
it  also creates more opportunities for 
parallel operations or storage accesses, 
resulting in better performance. On the 
other hand, allocating fewer resources 
decreases area and cost, but it also 
forces operations to execute sequen- 
tially, resulting in poorer performance. 

To perform the required tradeoffs, al- 
location must determine the exact area 
and performance values. A simple ap- 
proximation of cost and performance 
consists of the number of functional 
units and the number of control steps, 

I Control unit . .  1- I : Data path 

d r  

8 

--.  

Control j I 
State register lines I ~ 

I 

logic logic 

............_.~...._. 

Control outputs Data outputs 

Figure 6. Pipelined FSMD model: component pipelining la), control pipelining lb), and 
data path pipelining (c). 
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Table 1. An R l f  library. 

Components Delay Area 
(operations) Ins) (Fm’) 

ALU-F (+/-/shr) 20 600 
ALU-S (+/-/~hr] 70 400 
MAX (rnax) 80 800 

respectively. We can arrive at a more 
accurate estimate by means of the phys- 
ical models stored in the RTL library. 
Table 1 shows a library containing three 
components: two ALU implementa- 
tions (ALU-F and ALU-S), which per- 
form the shift, add, and subtract 
operations, and MAX, which performs 
the max operation. ALU-F is fast, capa- 
ble of executing an operation in 20 ns; 
ALU-S takes 70 ns to complete the op- 
eration but is smaller and cheaper. 

Using this library, we can obtain area 
and performance tradeoffs for our ear- 
lier example. Table 2 shows five alloca- 
tions of functional units for the DFG in 
Figure 3. A simple estimate of the area 
for each allocation choice consists of the 
sum of the areas of the individual library 
components. We can also estimate the 
performance for each allocation, as 
shown in Figure 7. The figure shows that 
allocation A consumes the smallest area 
but results in the worst performance. 
Allocation E produces the best perfor- 
mance but most expensive design. Our 
selection of one of the five allocations 
for further synthesis would depend on 
the criticality of the application. 

We can compute similar curves to 
determine the tradeoffs between per- 
formance and number of storage units, 
number of ports on each storage unit, 
and number of interconnection units. 
By selecting appropriate points on these 
curves, we determine the optimal num- 
ber of resources of each type. 

Instead of searching automatically 
through the large design space, most of 
today’s high-level synthesis systems al- 

Table 2. Possible allocations for DFG in Figure 3. 

No. of No. of No. of 
Allocation ALU-F ALU-S MAX 

A 0 1 1 1,200 
B 1 0 1 1,400 
C 0 2 1 1,600 
D 1 1 1 1,800 
E 2 0 1 2,000 

600 

h 

500 
a 0 t 

E 
5 

400 
a 
U 
c 

300 ._ 
c 
v) W 

200 

Estimated area (pm’) 

Figure 7. Area-performance trade-off curve for possible allocations listed in Table 2. 

low the user to allocate the type and 
mix of hardware resources. To help the 
designer make the right choice, the al- 
location tool must provide metrics that 
accurately reflect area, performance, 
clock slack, and resource usage. 

In the future, allocation algorithms 
will require improvements for exploring 
more complex but more realistic archi- 
tectural styles. To broaden the scope of 
high-level synthesis for different appli- 
cation domains, allocation algorithms 
supporting multiple pipelining styles, 
memory hierarchies, and interconnec- 
tion topologies will be necessary. 

Scheduling. The next step sched- 
ules operations and memory accesses 
into clock cycles. Scheduling algo- 
rithms are of two types, based on the o p  

timization goal and the specified con- 
straints. If the user has completelyspec- 
ified all the available resources and the 
clock cycle length during allocation, 
the scheduling algorithm’s goal is to 
produce a design with the best possible 
performance, or the fewest clock cy- 
cles. In other words, scheduling must 
maximize usage of the allocated re- 
sources. We call this approach re- 
source-constrained scheduling. If  a list 
of resources is not available prior to 
scheduling, but a desired overall per- 
formance is specified, the scheduling 
algorithm’s goal is to produce a design 
with the lowest possible cost, or the 
fewest functional units. This is the time- 
constrained scheduling approach. 

Resource-constrained scheduling 
usually constructs the schedule one 
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state at a time. It schedules operations 
so as not to exceed resource constraints 
or violate data dependencies. It ensures 
that qt the instant for which it schedules 
an operation 0, into control steps,, a re- 
source capable of executing o, is avail- 
able and all the predecessors of node 
0, have been scheduled. 

In the example described earlier, the 
allocation task determined that two fast 
ALUs (ALU-F) and one MAX unit are 
necessary to achieve an estimated per- 
formance of 200 ns. Let us attempt to 
schedule our example with this alloca- 
tion (allocation E) and a clock cycle of 
50 ns. The algorithm can schedule both 
shift operations (ol and 02) in the first 
control step, since they are not depen- 
dent on any prior operations and two 
ALUs are available. When the algorithm 
schedules nodes in the second control 
step, it determines that both the addition 
operation 0, and the subtraction opera- 
tion 0, can be scheduled, since two fast 
ALUs are available. The MAX node can- 
not be scheduled until its predecessor 
(operation 0,) computes the result, and 
hence it is scheduled in the next state. 
Figure 8 shows the final schedule. 

In Figure 8, operations o3 and 0, are 
scheduled in the same state although 
they are dependent nodes. This process 
of scheduling two dependent nodes 
into the same state is called chaining; it 
is possible only if sufficient components 
are available and component delays 
are shorter than the clock cycle. In our 
example, the allocated ALUs have a de- 
lay of 20 ns and two ALUs are available, 
so we can chain the add and subtract 
operations operating under a clock pe- 
riod of 50 ns. 

The opposite effect occurs if the unit 
delay is longer than the clock cycle. The 
scheduler must allow several states for 
the operations to complete. The MAX 
component has a delay of 80 ns, while 
the clock period is only 50 ns. Thus, op- 
eration oj requires two clock cycles to 
complete. Scheduling in which opera- 
tions take more than one clock cycle to 

complete is called multicycling. 
In timeconstrained scheduling, the 

maximum number of control steps 
available for operations is fixed. Based 
on this performance constraint and the 
dependency constraints, we can com- 
pute the earliest control step e, and the 
latest control step 1, into which a node 
0, can be scheduled. Using the e, and 1, 
bounds for all nodes, we can estimate 
the maximum number of functional 
units or the cost of the design. Time- 
constrained scheduling algorithms se- 
lect a node o,, evaluate the cost of 
scheduling it in each control step be- 
tween e, and /,, and select the state s, that 
results in the least cost. The important 
goal is to minimize the number of func- 
tional units in any time step. 

These basic scheduling algorithms 
become very complex in real-world sit- 
uations. Actual libraries can have mul- 
tiple implementations of the same 
component, each with its own area and 
delay characteristics. Scheduling must 
ensure that the design uses faster func- 
tional units for operations on the criti- 
cal path and slower units for operations 
outside the critical path. 

A great deal of research effort has fo- 
cused on both resource-constrained 
and timeconstrained scheduling. Sev- 
eral books on high-level synthesis pro- 
vide details of the important work in 
~cheduling.~ '-I2 We hope to see this 
work extended to incorporate more re- 
alistic architectures, realistic libraries, 
data path and control pipelining, and 
memory hierarchy. 

Binding. The binding task assigns 
the operations and memory accesses 
within each clock cycle to available 
hardware units. A resource such as a 
functional, storage, or interconnection 
unit can be shared by different opera- 
tions, data accesses, or data transfers if 
they are mutually exclusive. For exam- 
ple, two operations assigned to two dif- 
ferent control steps are mutually 
exclusive since they will never execute 
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Figure 8. Example schedule based on 
allocation E. 

simultaneously; hence they can be 
bound to the same hardware unit. 

Binding consists of three subtasks 
based on the unit type: 

Storage binding assigns variables to 
storage units. Storage units can be 
of many types, including registers, 
register files, and memory units. 
Two variables that are not alive si- 
multaneously in a given state can 
be assigned to the same register. 
Two variables that are not ac- 
cessed simultaneously in a given 
state can be assigned to the same 
port of a register file or memory. 
Functional-unit binding assigns each 
operation in a control step to a 
functional unit. A functional unit or 
a pipeline stage can execute only 
one operation per clock cycle. 
Interconnection binding assigns an 
interconnection unit such as a 
multiplexer or bus for each data 
transfer among ports, functional 
units, and storage units. 

Although listed separately here, the 
three subtasks are intertwined and 
must be carried out concurrently for 
optimal results. 
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Figure 9. Storage binding: variable 
liktimes (a), compatibility graph (b), and 
possible solutions (c). 

We illustrate the binding process with 
the example scheduled in Figure 8 . To 
bind the variables onto registers, we 
must partition all the variables in the d e  
scription into compatible sets. A set of 
variables is compatible if all the vari- 
ables in the set are not alive at the same 
time. To determine the compatible sets, 
we must determine the lifetimes of the 
variables, as shown in Figure 9a. From 
the lifetimes, we create a compatibility 
graph, in which each node represents a 
variable, and an edge connects two vari- 
ables with mutually exclusive lifetimes. 
In our example, variables C and D are 
written in state 1 and read in state 2, vari- 
able E is written and read in state 2, and 
variable Fis written in state 2 and read 
in states 3 and 4. Figure 9b shows the 
compatibility graph for these variables. 

Next, the compatibility graph must 
be partitioned into cliques. A clique is 
a fully connected subgraph-in other 
words, a subgraph containing several 
nodes, each node connected to all its 

aJ 

Choice 1 

Choice 2 

(4 
Figure 10. Functional-unit binding: 
partial design after binding operations in 
state I (a); state 2, choice I (b); and state 
2, choice 2 (c). 

neighbors. A clique indicates a set of 
mutually exclusive nodes that can be 
bound to the same resource. 

For our example, a clique partition 
of the compatibility graph results in two 
possible solutions, shown in Figure 9c. 
Both solutions require two registers for 
storing the four variables. The first so- 
lution uses register R1 to store variables 
Cand Fand register R2 to store variable 
D. Variable E does not require storage 
because it is not alive over a state 
boundary and is implemented with a 
wire connection. 

The next task in the binding process 
is functional-unit binding, which assigns 
the operations in each state to the allo- 
cated functional units. We can construct 
asolution to the functional-unit binding 

problem one state at a time. The first 
state provides two binding choices, 
since both operations 0, and o2 can be 
bound to either of the available ALUs. 
Assume that 0, is bound to the first and 
0, is bound to the second. Figure 10a 
shows the partial design after binding of 
the operations in the first state. 

The binding process continues for 
operations in the second state. Since 
state 2 has two operations, 0, and ol, 
and both ALUs are capable of execut- 
ing both operations, we have two dif- 
ferent choices: bind o j  to ALUl and o, 
to ALU2 or vice versa. Figure 10b shows 
the resulting partial design for the first 
choice. New connections are shown in 
bold lines. The design requires four ad- 
ditional two-input multiplexers or eight 
new tristate drivers to complete the par- 
tial binding of states 1 and 2. Figure 1Oc 
shows the result of the second choice: 
Three additional multiplexers or six tris- 
tate drivers are sufficient because the 
connection from B to the second ALU is 
reused. Thus, the second choice leads 
to a more optimal design. 

However, this binding algorithm uses 
a "greedy" approach and could lead to 
suboptimal solutions. The high-level 
synthesis books detail other binding ap- 
proaches.'7 l 2  

Binding can reduce the design's 
wiring area by storing variables in reg- 
ular structures such as register files or 
n-port memories instead of in distrib- 
uted registers. The algorithm achieves 
this by mapping all the scalar variables 
on a scheduled flow graph into a mini- 
mal set of register files based on the van- 
ables' access patterns. 

I f  array variables are present in the 
description, simple binding algorithms 
proceed by mapping each array vari- 
able into aseparate memory module of 
the same dimensions as the array vari- 
able. This approach is unacceptable b e  
cause it leads to inefficient designs. A 
more efficient approach is to cluster 
many array variables into a single 
memory module. This leads to a solu- 
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tion with fewer memory modules and 
fewer ports: the reduction in ports re- 
duces the size of the memory modules. 
However, the clustering of array vari- 
ables requires an address translation for 
array access, thereby degrading perfor- 
mance. Researchers must develop al- 
gorithms capable of binding variables 
into a hierarchical memory organiza- 

and memories. 
I tion containing caches, register files, 

Design methodology. In a typical 
design environment, high-level synthe- 
sis can be part of a topdown or a bot- 
tom-up design methodology. Following 
a top-down methodology, the designer 
synthesizes the behavioral description 
into an RTL netlist, using a generic li- 
brary of parameterized components. 
Since the components are parameter- 
ized, they may not exist during the high- 
level synthesis phase. However, an 
estimate of the area and delay and a list 
of the control and data ports are suffi- 
cient to complete high-level synthesis. 
Each component in the synthesized 
RTL netlist is designed at a later time by 
means of logic synthesis and technolo- 

The top-down methodology is suit- 
able for gate arrays and standard-cell- 
based designs, which must be 
completely flattened to the gate-level 
structure during layout. After the flat- 
tening, the layout process may place 
the components of the flattened netlist 
in different parts of the design, making 
it difficult to predict accurately the de- 
sign’s area and delay. 

In a bottom-up methodology, high- 
level synthesis uses a library of pre- 
designed components. Thus, the exact 
shape, size, and timing of components 
are known during high-level synthesis. 
High-level synthesis uses this informa- 
tion to predict various design parame- 
ters such as the clock period and floor 
plan. This methodology is useful for cus- 
tom designs that combine predesigned 
components to build the system. 

w mapping. 

A mixture of the topdown and bot- 
tom-up methodologies would be ideal 
in all design environments. The top- 
down methodology allows rapid ex- 
ploration techniques during the early 
design-planning phases. The bottom-up 
methodology allows optimization dur- 
ing the final layout phases. 

Future directions 
With no limitations in sight on the 

growth of ASICs, designers need new 
design methods to cope with ASIC com- 
plexities. High-level synthesis deals with 
these complexities by allowing design 
at higher abstraction levels. Several 
tools available from universities and re- 
search organizations demonstrate the 
potential of high-level synthesis, espe- 
cially for specialized applications such 
as signal and image processing. 

Despite this potential, designers use 
high-level synthesis sporadically, owing 
mainly to insufficient designer training, 
the lack of a clearly defined methodol- 
ogy, and insufficient offerings from the 
design automation industry. Now, how- 
ever, several vendors are developing a 
new generation of synthesis tools em- 
bodying the concepts discussed here. 
These tools should help make high- 
level synthesis an integral part of the de- 
sign process. 

Although high-level synthesis promis- 
es to reduce time to market and gener- 
ate high-quality designs, it is not a 
panacea. For example, its use in mi- 
croprocessor design may be limited b e  
cause in specifying the instruction set 
and the architecture, the designer has 
already completed scheduling and 
binding. Also, in the highly competitive 
microprocessor industry, the use of au- 
tomated CAD tools may not be efficient. 
Instead, manual optimization is neces- 
sary to extract every bit of performance 
from the design. Furthermore, micro- 
processors are heavily pipelined with 
instruction look-ahead, and many syn- 
thesis tools do not adequately handle 
such advanced architectural features. 

WIDE ACCEPTANCE OF high-level syn- 
thesis will depend on how well the re- 
maining open problems are solved. 
Among the most important are the fol- 
lowing: 

Syntactic variance. The results of 
high-level synthesis must not de- 
pend on the description style. 
Eliminating syntactic variance 
would ensure that designers who 
are not proficient in HDL model- 
ing and who don’t understand 
high-level synthesis algorithms ob- 
tain satisfactory designs from high- 
level synthesis tools. 
Inteructivity. A lack of interactivity 
in high-level synthesis tools makes 
it difficult for designers to control 
the design process and produce 
the designs they want. The design 
community does not accept push- 
button solutions. 
Libraries. Synthesis tools must be 
capable of using a wide variety of 
user-defined libraries and cores. 
Without library transparency, syn- 
thesis algorithms must be tuned to 
a specific library, making tool main- 
tenance difficult. 
Interfaces to lower levels. Designers 
must consider the layout implica- 
tions of any architectural choices 
made by high-level synthesis. 
Thus, tools that enable interaction 
with logic and layout tools and 
that provide accurate estimation 
techniques would greatly improve 
the quality of synthesized designs. 

The future tutorials in this series will dis- 
cuss the principles of high-level synthesis 
in more detail and evaluate proposed SD 

Mons of its basic problems. 
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